5G信道模拟器关键技术及实现

北京邮电大学 | 马楠 陈建侨

目前3GPP、ITU等国际组织正在积 极推动5G技术标准化进程,5G正处于技 术研究向技术验证演进的关键阶段。信 道模拟器可以将实际无线场景在实验室 准确、反复重现,极大地提高技术验证效 率。为支持5G大规模天线及宽带特性,相 应的信道模拟器需要提供远大于现有4G 信道模拟器的处理能力和更严苛的时延 控制,与此同时,5G信道海量天线等特性 也为信道建模及其实现带来难题。

5G信道模拟器的硬件设计

信道模拟器需要考虑极复杂的数字 信号处理能力,同时还需考虑射频与基带 模块间和基带与基带模块间的高速互联 能力,进而实现密集信号运算的分布式处 理。AXIe(AdvancedTCA extensions for instrumentation and test,仪器与测试高级电 信运算构架的扩展)是在PXI标准、LXI标 准和IVI标准基础上制定的,是针对测试 应用的系统架构。AXIe以AdancedTCA为 基础的大型电路板开放式系统体系结构, 是高性能仪器的理想选择。

现代信道模拟器都是在基带数字域 采用数字信号处理方法完成无线信道的 模拟。由于信道模拟需要综合考虑多径、 时延、多普勒、时变快速衰落、空间相关 性等信道传播效应,需要完成复杂的数字 信号处理算法,算法复杂度较高,数据源 速率高达Gbit/s,待处理数据量巨大。

另一方面,由于信道模拟需要连续不 间断处理且有系统最小延迟要求,而且要 求多径间的时间分辨率为纳秒级,对数 字信号处理算法的复杂度及实现的实时 性提出了严格的限制。因此,信道模拟单 元(CEU)应采用擅长并行处理的高性能 FPGA芯片为基础。如图1所示,基于AXIe

图1 信道模拟单元设计

架构的CEU主要包括了4片高性能的FPGA 及一片DSP用于基带信号处理,负责运行 底层信号编解码算法。

该平台与4G平台相比,在硬件乘法 累加操作(MACs)及每秒浮点运算次数 (FLOPS)上有显著提升,如图2所示。

5G信道建模

信道模拟器通过信道模型对无线环 境进行抽象性描述。信道建模通过一系列 的参数来表征无线环境的物理特征,进而 准确刻画出无线信号的传播机制,是评估 无线技术性能必不可少的手段之一。信道 建模也是5G信道模拟器的关键难点之一。

图25G基带处理平台能力提升

Massive MIMO是5G的关键技术之 一,通过在基站覆盖区域内配置数十根甚 至数百根天线,能够显著提升信道容量、 能量效率和频谱利用率。与此同时,天线 阵列的面积也显著增大,因此不能简单套 用4G信道建模的方法。

实验测试表明,由于天线阵列的增 大,天线阵列对散射体的可见性不再满足 广义非平稳(wide-sense stationary, WSS) 假设,如图3所示。散射体 Cluster,对发射 端天线阵子 Am²,可见(实线表示),但是 对接收端天线阵子 Am²,不可见(虚线表 示)。相反, Cluster,对接收端天线阵子 Am²,可见,而对发送端天线阵子 Am²,不可 见。Cluster,对发送端 Am²,和接收端 Am², 都可见。因此,在构建信道矩阵时,只有 Cluster,是有效的。

目前,对散射体的非稳定特性描述可 分为两类:生灭过程(birth-death process) 法和散射体可见区域(cluster visibility region)法。此外,在对生灭过程法和散射 体可见区域法进行广泛研究的基础上,提 出了一种混合方法。

生灭过程法

生灭过程是从统计角度对散射体的 不稳定进行描述,此种算法已经得到了 广泛的研究,其过程简述如下:假设*C*和 *C*为别表示对发送端第1个天线阵子和接 收端k个天线阵子而言,可见的散射体所 组成的集合。

因此,只有散射体同时处于 C⁷和 C^{*} 时,这个散射体才能对计算信道系数矩阵 有贡献,进而对信道特性产生影响。依据 生灭过程,发送端和接收端的散射体可见 集合中散射体的可见性由其生存的概率表 征,即 C^{*}

同时,两个散射体出现和消失的间隔

图3天线阵列对散射体可见性

满足指数分布。虽然研究证明了用生灭过 程描述散射体非稳定性的有效性,但是该 方法也存在一些缺点,比如算法复杂度高 而且耗时,散射体与天线阵子间缺少直观 的几何位置关系等。

散射体可见区域法

散射体可见区域法是从散射体角度 出发描述天线的不平稳性。可以通过定义 散射体可见区域来表征散射体的非稳定 特性,即如果天线阵子位于散射体可见区 域内,则该天线阵子对应的散射体表示为 可见,否则,该散射体不可见。目前,尚无 统一的定义散射体可见区域的方法,需要 进一步研究和验证。

混合的生灭过程与散射体可见区域方法

该方法在发送端采用生灭过程得到每 个发射天线阵子散射体的可见性集合,在接 收端采用散射体可见区域方法确定接收端 天线阵子的散射体可见性集合。这样既可以 降低单纯采用生灭过程法的复杂度,又能 表现散射体可见区域法的直观几何特征。

算法简述如下。在发送端,依据生灭 过程法得到发送端的散射体可见性集合 C⁽(-12...,M_r)。在接收端,给出一种崭新的 散射体可见区域的定义,其对散射体可 见性区域的描述可以通过发送端天线阵 子经过散射体到达接收 端天线阵子的增益表征, 进而由两方面决定:电磁 波经过散射体的出射方 向和电磁波从发送端天 线阵子出发经过散射体 到达接收端天线阵子的 距离。进而,采用角度功

率谱(power azimuth spectrum, PAS)和 指数函数分布来计算电磁波到达接收端 天线阵子后的路径增益,进而可以判断 该散射体是否对接收端天线阵子可见。

设置接收端天线阵子的增益 为-100dB,图4给出了接收端天线阵子对 散射体内子簇的可见性差异。图4表明,散 射体中原存在20个子簇(Rayl to Ray20), 对接收端第一个天线阵子而言,3个子簇 (Ray15, Ray17, Ray19)对其不可见。子簇 4(Ray4)对整个接收端天线阵子可见,而 子簇5(Ray5)仅对部分接收端天线阵子 可见。因此,不同的接收端天线阵子对散 射体的可见性不同。

计算接收端天线阵子的空间相关 性(spatial cross-correlation function, SCCF),设置仿真参数进行仿真,仿真 结果如图5所示。仿真结果表明,一方面, 随着接收端天线阵子的距离增加,SCCF 降低。另一方面,对于接收端天线阵子 **冰- k** = 1,SCCF不仅和绝对的天线阵子位 置有关,还与相对的天线阵子位置有关。 实验结果还表明接收端天线阵子对散射 体不再满足WSS。

信道模拟器实现

基带信道模拟是信道模拟器的核心,

Sos

tind o.e

91054 0.4

即在实时信道模拟硬件(CEU)上,先完 成最核心的基带信道模拟工作,再调制至 相应的频率上完成信道模拟功能。信道模 拟器关键的技术要点如下。

相位控制

相位控制用于各个信道模拟端口的 相位调整,其主要目的是在进行OTA、波 束成形等测试时,依据校准相位值对基 带通道进行相位补偿,也可用于波束成 形信道模型的相位配置实现。

信道卷积

信道卷积功能实现输入信号和CIR 系数的卷积,主要由乘法器构成。信道 卷积功能中还将包括一项重要功能是将 依据Doppler频率存储的CIR进行非整 数插值至信号采样速率,保证信道卷积 能够以简单的相同速率信号相乘实现。 此过程中需要考虑定速率插值、变速率 插值、多项滤波器等多种数字信号处理 方法的结合。

多探针暗室进行OTA测试将成 趋势

随着Massive MIMO技术与理论的成 熟,5G系统中的天线数目越来越多,而传 统的传导测试会导致每次连接校准时间 很长,同时随着天线尺寸减小,每一路单 独给出一个射频口的可能性也不大。所 以,通过多探针暗室的方式进行OTA测试 将是未来的主要测试解决方案,信道模拟 器在3D MIMO OTA系统中的应用也是未 来的研究热点之一。

🧰 編輯 | 程琳琳 chenglinlin@bjxintong.com.cn

(k,k)-(2,1)

(k.k')=(16.1

图4 散射体中子簇对接收端天线阵子可见性示例

0 0.5 1 1.5 2

图5 接收端天线阵子的空间相关性示例