doi:10.3969/i.issn.1000 - 1247.2017.04.002

TD-LTE系统引入载波聚合功能策略研究

田桂宾

中国移动通信集团设计院有限公司新疆分公司

分析TD-LTE与LTE FDD下行峰值速率对比;对载波聚合原理进行阐述;介绍载波聚合的技术优势;通过测 **商要** 试对比分析载波聚合功能引入与载波扩容对网络吞吐量的影响;分场景提出载波聚合功能的引入策略。

TD-LTE 载波聚合 负荷均衡 载波调度 高数据流量

1 TD-LTE与LTE FDD下行峰值速率对比

LTE FDD系统采用双天线(即2×2 MIMO),通过20MHz 带宽组网, 计算峰值速率如下。

RS (参考信号) 开销: 每个子帧RS的开销为16/168=9.5% PCFICH、PHICH信道开销:考虑到和RS信号重复的部 分, PCFICH、PHICH和PDCCH的开销为(36-4)/168=19%。

SCH信号开销:时域占用第0个和第5个子帧的第一个 时隙的第5个和第6个符号,则 SCH的开销为(2×12×2×6)/ $(12 \times 14 \times 100) = 1.7\%$

BCH开销: 时域上占用第一个子帧的第7、8、9、 号,每4帧出现一次,频率占用中间6RB。因此BCH的开针 为 $(4 \times 12 - 4) \times 6/(4 \times 12 \times 14 \times 100) = 0.39\%$ 。

这样下行在采用 64QAM、2×2 MIMO以及编码 情况下,峰值速率为: 100×12×14×(1-9.5%-19%-1.7%-0.39%) × 2 × 6 × 1000= 142.86Mbit/s_o

目前实际中测到的最大速率基本在140Mbit/s左右。

TD-LTE系统一个10ms的系统帧内既存在下行子帧, 又存在上行子帧, 因此需要考虑特殊帧的开销。特殊时隙按 照能够传输数据计算,则特殊时隙的数据为正常时隙的0.75 倍。同样以20Mbit/s带宽为例,可用RB为100,上下行时隙 配比是1:3。则TD-LTE峰值下载速率为:

 $100 \times 12 \times 14 \times ((3+0.75)/5) \times (1-9.5\%-19\%-1.7\%-$ 0.39%) × 2 × 6 × 1000=107.14Mbit/s₀

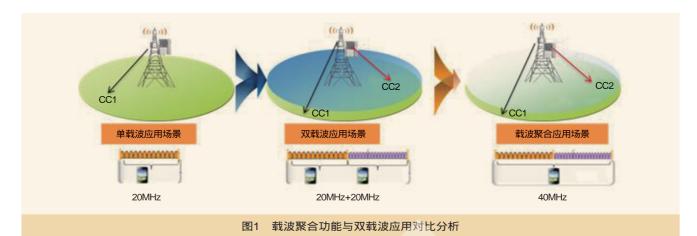
通过上述计算可知,同等条件下,TD-LTE下行峰值 速率小于FDD的峰值速率。如果仅采用单一载波进行组网, TD-LTE单用户下载速率将明显劣于LTE FDD。积极引入载波 聚合功能提升单用户下载速率是有效弥补相关劣势的关键。

载波聚合引入优劣势分析

载波聚合原理

多连续或离散的载波聚合在一起,以 便形成更宽频谱,从而实现下行峰值速率的提升。通过载波 能够将目前中国移动多个零散频段聚合在 形成大的带宽,从而提升单个用户峰值下载速率。

前,LTE支持的最大带宽是20MHz,通过聚合多个对 LTE后向兼容的载波,可以支持最大100MHz带宽。接收能 力超过20MHz的终端可以同时接收多个载波,这样就能够有 效弥补单载波下用户峰值速率不足的情况。现阶段设备最大 支持100MHz(最多5个20MHz的载波)带宽的载波为UE提 供服务,双载波理论峰值速率可达226Mbit/s。


2.2 载波聚合技术优势及测试结果分析

2.2.1 有效增加单个载波带宽,提升单用户峰值速率

如图1所示,相对于单载波而言,载波聚合功能将多个 离散载波有效聚合在一起,逻辑上是一个独立的载波。因此 对同一个用户而言, RB可用数成倍提升。对于没有开通载 波聚合功能的小区及用户而言,由于同一个用户只能接收来 自同一个小区且单一载波的信号,因此对于TD-LTE用户最 大峰值速率只能为107Mbit/s。但当采用载波聚合功能后,可 用RB数成倍提升,因此同一个用户可用带宽成倍提升,这 对于市场宣传是极大优势。

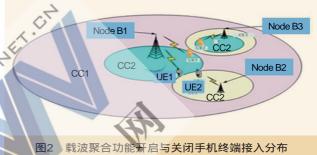
2.2.2 充分利用网络资源

随着用户的不断涌入,在网络建设过程中势必会通过 多个载波满足容量需求。由于不同载波之间是相互独立的, 同一个用户只能接收单个载波信号,因此不同载波之间将存

在负荷不均衡的现象。为了实现网络资源的充分利用,系统 将依据用户业务使用及不同载波使用调整用户在载波间的分 布,即通过载波之间的切换,实现不同载波之间负荷相对平 衡,以此实现资源的充分利用。但相对于一些极端 多个载波RB资源已经被充分占用时,没有CA功能引入的 区,剩余RB资源将无法得到充分利用。

如在某一时刻,载波1剩余10个RB,载波2剩余10个 RB, 此时有用户突发业务带宽较大,则该小区只能将10个 RB分配给该用户,而另外10个RB将闲置。但如果引入CA 功能,此时可以将20个RB资源同时调度给该用户,RB资源 使用效率得到有效提升,同时也能极大提高用户感知。

2.2.3 负荷均衡减少切换


当不同载波之间网络负荷存在较大差距时,对于没有引 入CA功能的扇区,在载波之间需要进行载波间的切换, 时系统需要增加额外的信令开销。

系统需要对不同载波负荷进行计算,同时对不同载波上 的附着用户进行统计,对不同载波容量进行统计。当进行负荷 均衡时,系统侧需要发起相关测量流程,并将负荷较重载波上 的用户切换至同扇区的其他负荷较轻的载波上, 最终实现不同 载波之间的负荷相对平衡。由于切换时存在大量信令交互,因 此在一定程度上将增加系统开销。此外, 由于需要进行载波间 切换,因此存在切换失败的风险。以下为实验网中某小区CA 功能开启及关闭后切换次数及切换成功率情况,见表1。

开启CA后,切换次数明显降低,主要是由于做载波聚合 的主辅小区间可以更灵活地进行负载均衡,不需要终端在小区 间做切换,只需要考虑做多载波调度或跨载波调度,将更多终 端分配在负荷较轻的成员载波上,即可达到负荷均衡的目的, 而且覆盖区域内支持CA的终端比例越高,该增益越明显。

2.2.4 跨载波调度优势明显

某实验网开启CA后手机终端在小区边缘接入网络情 况,如图2所示。

载波聚合功能开启与关闭后对比分析

功能状态	切换总次数	基于覆盖的切换次数	基于负载均衡的切换次数
开启CA	0	0	0
关闭CA	15	12	8
切换成功率	100%	100%	100%

从图2可以看到,由于UE2处于Node B2小区边缘,因 此它将受到来自宏站Node B1的干扰。此时若未开启CA功 能,则Node B2只能通过本小区的子载波进行调度,将该区 域与Node B1相同的子载波通过测量报告进行调整。为降低 干扰,需通过x2进行基站间协调,将Node B2的PDCCH从现 有子载波调度到其余子载波上,此时可调度子载波资源仅为 1200个,或者将进行载波间的调度,此时需要进行跨载波切 换。但如果开启CA功能后,此时Node B2可依据测量报告在 载波内部进行调度,由于此时载波聚合后可调度子载波资源 位1200×n个, 因此可调度资源数量较多, 而无需进行跨载 波切换,从而使用户感知得到提高。

从上述测试可以发现, 开启CA及关闭CA时PDCCH CINR>0的指标提升了大约6%,网络指标得到有效提升。载 波聚合功能开启与关闭时用户感知对比分析如图3所示。

2.3 载波聚合引入与载波扩容网络吞吐量对比分析

对某基站进行载波聚合功能开启与关闭情况的对比测

试, 见表2。

从上述测试结果中可以看出,引入载波聚合功能之后, 系统吞吐量提升量并未超过合并小区数量的整数倍。单小区 峰值下行吞叶量在好点为63.91Mbit/s, 而引入1+2载波聚合 后的下行吞吐量为167.33Mbit/s。由此可见其峰值速率仅为 单小区的2.6倍,而此时该扇区载波数量已增加至原扇区的3 倍。因此可知载波聚合功能并未提升系统整体吞吐量。

此外通过对比分析可以发现好点的峰值上行吞吐率由 8.9Mbit/s下降至8.72Mbit/s;而中点的峰值上行吞吐率由 1.92Mbit/s上升至8.95Mbit/s。虽然此次测试结果中好点的峰 值上行吞吐率可能受服务器等因素限制而造成一定的测试偏 差,但从一定角度来说,在好点的上行峰值吞吐率提升效果 并不明显。

在网络建设初期,用户数量较低时,单个用户峰值速率 较高;但当大量用户接入网络时,此时用户峰值速率主要受 网络容量和网络质量限制,而网络质量主要由网络结构的合 理性决定。因此用户数量较多时, 载波聚合功能的引入并不 能显著提升单个用户峰值速率。

2.4 小结

由于载波聚合功能调度载波数量增加、负荷均衡开销降 低等因素,有助于提升系统吞吐量;载波聚合功能引入的最 大优势在于提升系统的KPI指标,尤其在小区边缘同频干扰 的规避、跨载波调度减少系统内切换、提升系统切换成功率 方面优势明显。

从单小区的吞吐量来看,载波聚合功能引入后,单小 峰值下行吞吐量随聚合载波的数量成线性增长, 这对于有 改善TD-LTE相对于LTE FDD单小区峰值吞吐量劣势有积 极作用,尤其在提升单用户峰值速率方面优势明显,这对今 后市场宣传及推广都有积极的意义。

但载波聚合功能并不能提升系统容量, 甚至在某种程度 上来说,载波聚合功能的引入会造成系统的开销增大;但由 于系统吞吐量提升主要在于可调度的RB资源数,而载波聚 合功能引入时网络资源并不改变, 因此整体来说, 载波聚合 功能的引入对系统吞吐量的提升并不明显。

3 载波聚合应用场景分析

3.1 在重要窗口宣传区域应用

由于载波聚合功能对于提升单用户峰值速率有明显优 势,因此载波聚合功能应重点在营业厅、展示厅等重要演示 窗口应用。此类区域重点向用户进行宣传推广,吸引用户使 用4G业务,同时为了展示中国移动网络性能,建议加大载波 配置。目前载波聚合功能已经向3CC聚合方面演进,设备侧 基本支持3CC聚合。而终端侧在2016年下半年实现3CC载波 聚合。营业厅、展示厅多为封闭式场馆,网络多通过E频段以 室内分布方式进行建设,考虑到TD-LTE单载波带宽为LTE FDD的一半,为保证用户感知,建议开启3CC载波聚合。

对于机场候机厅、火车站候车室、大型商场及党政机关 等区域,此类区域为中国移动重点宣传窗口区域。此类区域 用户数量较多,人员流动较大,用户相对静止,因此对数据 需求较大。此类区域重点是满足用户接入,并不是片面 校高的单用户下载速率,只要能够满足用户高速上网需 求和有效接入即可。由于载波聚合功能价格较高,目前基本 为单载波造价的0.5倍,在网络建设初期,建议将投资重点用 于增加载波配置,以此来满足用户接入,载波聚合功能的引 入重点保障小区间的切换,增加小区内载波调度数量,因此

> 可配置2CC载波聚合。后期随 着用户大量涌入, 当系统峰 值吞吐量超过容量的50%时, 载波间的负载均衡切换数量 将逐步增加,此时可开启3CC 载波聚合。

150 80.93 97.66 88.49 97.54 91.92 97.3 97.5 96.59 94.72 100 70.65 59.56 48.57 50 0 0 3dB 6dB 9dB 12dB 15dB 图注 ■ 关闭CA ■ 开启CA

图3 载波聚合功能开启与关闭时用户感知对比分析

表2 载波聚合功能开启与关闭时网络指标与吞吐量对比分析

测试点	单载波(1小区)			载波聚合(1+2小区)					
	平均RSRP (dBm)	平均SINR (dB)	峰值下行 吞吐率 (Mbit/s)	峰值上行 吞吐率 (Mbit/s)	RSRP (dBm)	平均SINR (dB)	平均SINR (dB)	峰值下行 吞吐率 (Mbit/s)	峰值上行 吞吐率 (Mbit/s)
好点	- 84.85	26.28	63.91	8.9	-62.87	30	16	167.33	8.72
中点	- 108.74	11.11	32.52	1.92	-100.98	12.32	5.69	48.43	8.95
差点	-116.36	-2.38	5.23	0.41	未聚合				

3.2 在室外高数据流量区 域的应用

高数据流量区域是中国 移动LTE网络服务的重点区 域,如何确保该区域的网络质 量是提高用户口碑目讲行用户 竞争的主要区域。此类区域重 点需要满足大量用户的接入以 及用户高数据业务需求,同时此类区域对网络质量要求较高。 因此在此类区域进行载波聚合功能引入时,重点应当实现KPI指 标的保证,同时应当积极增加载波配置以满足数据业务需求。

由于载波聚合功能价格较高,而真正满足用户高数据业 务需求的是网络容量,因此在此类区域的载波配置将是网络 建设的重点。在网络建设初期建议首先应以提升网络容量为 主,但为了保证网络KPI指标,可在部分基站配置2CC载波 聚合。对于配置载波聚合的小区筛选方式如下。

首先,通过对RRC连接数及扇区流量进行分析,对高 数据流量目RRC连接数较大的扇区进行统计,将网络负荷 超过50%的小区且同一扇区内载波间切换数量较多的扇区作 为备选扇区。

其次,对高数据流量目RRC连接数较大的扇区中对应 的小区进行分析,分析该小区与周边小区切换次数及切换成 功率,对于切换次数高且切换成功率较低的小区进行统计, 将该扇区内相关小区开启载波聚合功能;对于其余网络负荷、 超过50%的小区建议增加载波配置。

在网络建设初期,不建议成片开启载波聚合功能,可采 用插花方式进行功能引入,但应重点保证切换次数高且切换 成功率低的小区必须开启该功能。由于此类小区已经开启载 波聚合功能,因此能够有效降低因负载均衡造成的切换,同 时也能有效提升该小区可调度资源数量,这样既保证了切换 成功率,同时也降低了工程造价。

3.3 在其他区域的应用

在其他区域,如果宣传作用并不高且非数据业务热点。 域,建议网络建设时首先应当结合RRC连接数进行分析 优先增加载波配置, 待业务发展到一定程度, 结合小区间切

(上接7页)

- [2] 胡利萍,孙朝晖,张琨,等.路灯杆通信基站建设方案及管理模式 分析[J]. 移动通信, 2015, 39(3)
- [3] 刘欢欢,于磊.LTE网络城中村覆盖解决方案探讨[J].信息通 信,2014(11)
- [4] 杜刚亭,吴丹飞,王月定.一种面向中国移动4G时代的接入网建设 策略[J].邮电设计技术,2015(4)
- [5] 桂霖.4G建设背景下一体化基站的应用[J].内蒙古科技与经 济,2015(9)
- [6] 刘庆刚.基于4G移动通信网络发展规划研究分析[J].中国新通 信,2015(13)
- [7] 殷哲,马哲锐,山笑磊.LTE网络建设中微基站的应用探讨[J].移动 通信,2016,40(5)
- [8] 刘金科,黎建波.LTE微基站应用分析[J].移动通信,2015,39(7),11111

如对本文内容有任何观点或评论,请发E-mail至ttm@bjxintong.com.cn。

换情况适当开启载波聚合功能, 但不建议该扇区内所有载波 统一开启,应当分析小区间切换情况适当开启该功能,以便 充分利用投资,满足市场发展需求。

4 结束语

载波聚合功能能够有效增加单个载波带宽,提升单用户 峰值速率,从而提升用户感知;其次当开启该功能时,能够充 分利用网络资源,提升网络利用率;此外在负荷均衡较大时, 开启该功能能够减少小区内切换次数,提升用户感知; 开启该 功能在跨载波调度时优势明显;但当大量用户接入网络时,载 波聚合功能的引入对于提升单个用户峰值速率并不显著, 且其 造价相对较高,因此建议载波聚合功能应当结合不同场景及业 务发展情况适当开启, 以实现低成本、高效率的网络建设。

参考文献

- [1] 沈嘉,索士强,全海洋,等.3GPP长期演进(LTE)技术原理与系统设计 [M]. 北京:人民邮电出版社,2008
- [2] 王映民,孙韶辉,等. TD-LTE技术原理与系统设计[M]. 北京:人民邮 电出版社,2010 ttm

<mark>如对本文内容有任何观点或评论,请发E-mail至ttm@bjxintong.com.cn。</mark>

作者简介

田桂宾

毕业于长春邮电学院,现就职于中国移动通信集团设计院有限 公司新疆分公司, 高级工程师, 长期从事移动通信网络规划设 计工作, 先后参与完成了新疆移动多期GSM网络扩容工程、 网络优化工程建设、中国移动多期TD-LTE网络建设以及TD-LTE网络建设及规划工作, 具有丰富的网络建设及规划经验。

作者简介

任三阳

硕士,毕业于重庆邮电大学,现就职于湖南省邮电规划设计 院有限公司第六通信规划设计院, 工程师, 从事无线网络规 划设计工作。

毛岳波

本科,毕业于上海交通大学,现就职于湖南省邮电规划设计 院有限公司第六通信规划设计院,注册咨询工程师,从事无 线网络规划设计管理工作。

苗建宣

本科,毕业于长沙学院,现就职于湖南省邮电规划设计院有 限公司第六通信规划设计院, 工程师, 从事无线网络规划设 计工作。